Man

Felipe Ignacio Lara Obreque

Profesor Asistente

Universidad de Tarapacá

Arica, Chile

Líneas de Investigación


Nonconvex optimization; Optimality conditions; proximal point algorithms

Educación

  •  Licenciado en Ciencias de la Ingeniería Matemática, UNIVERSIDAD DE CONCEPCION. Chile, 2009
  •  Matemáticas Aplicadas, UNIVERSIDAD DE CONCEPCION. Chile, 2015
  •  Ingeniero Civil Matemático, UNIVERSIDAD DE CONCEPCION. Chile, 2010

Experiencia Académica

  •   Profesor Part-Time Part Time

    UNIVERSIDAD CATOLICA DE LA SANTISIMA CONCEPCION

    Concepción, Chile

    2014 - 2015

  •   Profesor Asistente Full Time

    UNIVERSIDAD DE TARAPACA

    Instituto de Alta Investigación

    Arica, Chile

    2019 - A la fecha

Experiencia Profesional

  •   Profesor Part-Time Part Time

    Universidad Federico Santa María

    Chile

    2015 - 2015


 

Article (31)

Bregman type proximal point algorithms for quasiconvex minimization
Relaxed-inertial proximal point type algorithms for quasiconvex minimization
Semistrictly and neatly quasiconvex programming using lower global subdifferentials
An extension of the proximal point algorithm beyond convexity
Characterizations of nonconvex optimization problems via variational inequalities
On Nonconvex Pseudomonotone Equilibrium Problems with Applications
On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms
Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems
Strong subdifferentials: theory and applications in nonconvex optimization
On global subdifferentials with applications in nonsmooth optimization
Solving Mixed Variational Inequalities Beyond Convexity
A general asymptotic function with applications in nonconvex optimization
A Note on "Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces"
An Augmented Lagrangian method for quasi-equilibrium problems
On the Existence of a Saddle Value for Nonconvex and Noncoercive Bifunctions
Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives
A Further Study on Asymptotic Functions via Variational Analysis
A Quasiconvex Asymptotic Function with Applications in Optimization
Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces
Optimality Conditions for Vector Equilibrium Problems with Applications
Quadratic Fractional Programming under Asymptotic Analysis
Quasiconvex optimization problems and asymptotic analysis in Banach spaces
The q-asymptotic function in c-convex analysis
A note on Reguralizers for structured sparsity
Second Order Asymptotic Functions and Applications to Quadratic Programming
Formulas for Asymptotic Functions via Conjugates, Directional Derivatives and Subdifferentials
Generalized asymptotic functions in nonconvex multiobjective optimization problems
Second-order asymptotic analysis for noncoercive convex optimization
First- and Second-Order Asymptotic Analysis with Applications in Quasiconvex Optimization
Second Order Asymptotic Analysis: Basic Theory
Inner and outer estimates for the solution sets and their asymptotic cones in vector optimization

Proyecto (5)

Optimality conditions and proximal methods for generalized convex optimization problems
Further developments on quasiconvex functions with applications in continuous optimization and equilibrium problems
Further developments in asymptotic analysis under generalized convexity assumptions with applications in continuous optimization and variational inequalities
ASYMPTOTIC ANALYSIS UNDER GENERALIZED CONVEXITY ASSUMPTIONS IN OPTIMIZATION THEORY AND NONLINEAR ANALYSIS.
FURTHER DEVELOPMENT IN MULTIVALUED COMPLEMENTARITY PROBLEMS AND VECTOR OPTIMIZATION
34
Felipe Lara

Profesor Asistente

Universidad de Tarapacá

Arica, Chile

5
Felipe Lara

Postdoctorando

de Matemáticas

Universidad de tarapacá

Arica, Chile

2
Fabián Flores

Full Professor

Department of Mathematical Engineering

UNIVERSIDAD DE CONCEPCIÓN, DEPTO. INGENIERÍA MATEMÁTICA

Concepción, Chile